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SUMMARY

A study is conducted to investigate forced convective �ow and heat transfer over a bank of staggered
cylinders. Using a novel numerical formulation based on a non-orthogonal collocated grid in a physical
plane, the e�ects of Reynolds number and cylinder spacing on the �ow and heat transfer behaviour
are systematically studied. It is observed that both the Reynolds number and cylinder spacing in�uence
the recirculatory vortex formation and growth in the region between the cylinders; in turn, the rates
of heat transfer between the �uid and the staggered cylinders are a�ected. As the cylinder spacing
decreases, the size and length of eddies reduce. For su�ciently small spacings, eddy formation is
completely suppressed even at high Reynolds number. Pressure drop and Nusselt number predictions
based on numerical study are in excellent agreement with available correlations. The study provides
useful insight on the detailed �ow and heat transfer phenomena for the case of a bank of staggered
cylinders. Copyright ? 2002 John Wiley & Sons, Ltd.
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INTRODUCTION

The studies on pressure drop and heat transfer characteristics for cross �ow over tube banks
continue to attract considerable interest amongst researchers because of the importance of
this con�guration to heat exchangers. Most of the early works on this topic are experimental
in nature and they provide correlations for pressure drop and heat transfer coe�cients for
both in-line and staggered banks of tubes. Pierson [1] and Bergelin et al. [2; 3] are among
the early ones who investigate the �ow phenomena around in-line and staggered tube banks.
Zhukauskas’ [4] excellent survey of the experimental studies on �ow over tube banks pro-
vides valuable insight on the associated transport phenomena. Subsequently, the correlations
suggested by him are used for designing full-scale heat exchanger apparatus.
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Figure 1. Computational domain for �ow over a bank of cylinders.

While experimental studies provide useful correlations between the global parameters for
such complex problems, obtaining detailed information about the �ow and temperature �elds
experimentally is expensive and cumbersome. Numerical simulation studies are economical
alternatives for gaining a deep understanding of the associated �ow and thermal phenom-
ena, and their e�ects upon the heat transfer rate and pressure drop. Simulation of �ow and
heat transfer for the entire tube bank geometry requires extensive computational resources.
A useful approximation, in this regard, is the ‘periodically developed �ow’ assumption. Ac-
cording to this assumption, the interaction between two neighbouring cylinders in the interior
region of the tube bank can be represented by a globally developed (but locally varying �ow
�eld) with a �xed pressure drop and temperature increment per row of tubes. Hence, the
main features of the �ow and heat transport processes could be understood by simulating
one typical cell (covering the region between two adjacent tubes), as shown in Figure 1 (a)
and (b).
Earlier numerical studies on the simulation of �ow and heat transfer over tube banks have

employed co-ordinate transformation using body-�tted grids [5], or step-like Cartesian grids
[6; 7] or chimera type embedded grids [8]. Some extra e�ort for the grid generation process
and additional book-keeping are the di�culties associated with such approaches. Recently,
the present authors have developed a novel non-orthogonal, collocated grid based solution
procedure [9] for simulating laminar viscous �ows. The method solves for the �ow �eld in the
physical plane itself directly, without any co-ordinate transformation. Therefore, the coe�cients
of the �ow variables in the discretized equation can be directly linked to the corresponding
areas or lengths, thereby retaining physical insight in the �nite volume procedure. On the
other hand, the choice of curvilinear contravariant or covariant velocity components as cell
face velocities involve complicated tensor algebra to derive the momentum equations in the
transformed domain. Also, additional curvature terms are present in the governing equations,
which need to be treated as source terms. In view of these, it is di�cult to control or check
physical �ux balances during computation in the transformed domain. As a consequence, the
rate of convergence is severely a�ected, especially for highly skewed meshes. In the present
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LAMINAR FORCED CONVECTION OVER STAGGERED CYLINDERS 25

study, the novel algorithm is implemented for the complex situation of �ow over a bank of
staggered cylinders. Periodic boundary conditions are implemented at inlet and exit planes of
the computational region [10; 11], assuming periodically developed �ow. The predicted �ow
and heat transfer results are validated with the results of Bergelin et al. [3] and Zhukauskas
and Ulinkas [12] for in-line tube bank array and with Zhukauskas and Ulinkas [12] and Chen
and Wung [13] for staggered tube bank array. Also, a detailed parametric study involving
steady state laminar �ow and heat transfer over a bank of staggered cylinders is presented
for di�erent spacings and �ow Reynolds numbers. The predicted pressure drop and Nusselt
number variations are explained in terms of the changes in �ow structure, for the range of
conditions studied.

GOVERNING EQUATIONS AND DISCRETIZATION

Under the assumption of incompressible �ow, without viscous dissipation and absence of body
forces, the governing equations for mass conservation and transport of momentum and energy
can be expressed in integral form, using the Cartesian tensor notation, as follows.
Continuity: ∫

A
�uj nj dA=0 (1)

Momentum:

@
@t

∫
V
(�ui) dV +

∫
A
(�uiuj)nj dA= −

∫
A
Pni dA+

∫
A
�ijnj dA (2)

where �ij=�
[
@ui
@xj

+
@uj
@xi

]
and P is the dynamic pressure.

Energy:

@
@t

∫
V
(�CPT ) dV +

∫
A
(�CPTuj)nj dA =

∫
A

(
�
@T
@xj

)
nj dA+

∫
Q̇ dV (3)

Since the details of the non-orthogonal grid based viscous �ow in the two-dimension algo-
rithm are described elsewhere [9], only the basic steps are recounted here for the sake of
completeness. The extension of the same algorithm in three dimensions is straightforward.
Integration of the above governing equations over a control volume (Figure 2(a)) yields

the following form of discretized equations:
Continuity:

Fe − Fw + Fn − Fs=0 (4)

where Fk =
∑
�k�kAkj; �⇒ u; v; k → e; w; n; s; and j ⇒ x; y

In the above expressions, Akj represents the projected area in x or y direction for the kth
side of the control volume (Figure 2(b)).
Momentum and Energy:

a∗P�P= aE�E + aW�W + aN�N + aS�S + SP +
�VP
�t

�oP (5)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:23–40



26 D. GHOSH ROYCHOWDHURY ET AL.

Figure 2. (a) Typical control volume; (b) area vectors for face e.

where

aE = ‖ − Fe; 0‖+ d1e ; aW = ‖Fw; 0‖+ d1w
aN = ‖ − Fn; 0‖+ d1n; aS = ‖FS; 0‖+ d1s

a∗P = aE + aW + aN + aS +
�VP
�t

; SP= bno + bQU + S�

bQU is the source term arising from the deferred correction by QUICK scheme; bno is a source
term arising due to non-orthogonal grid contributions = (d2e + d

2
n)�ne − (d2w + d2n)�nw − (d2e +

d2s)�se + (d
2
w + d

2
s)�sw.

S� is a source term; = �Pi for momentum equation and, = Q̇PVP=CP for energy equation
in the case of heat generation.
In the above expressions, d1e = �e=Ve[A1exA

1
ex + A

1
eyA

1
ey] is the orthogonal part of di�usive

�ux on east face, and d2e = �e=Ve[A
1
exA

2
ex +A

1
eyA

2
ey] is the non-orthogonal part of di�usive �ux

on east face, where �⇒ � for momentum equation and (�=CP) for energy equation.
Similar expressions can be obtained for the other faces, w; n and s. The pressure term is

de�ned as

�Pi= �Px=A1Px(Pw − Pe) + A2Px(Ps − Pn)= in x momentum equation and

�Pi= �Py=A1Py(Pw − Pe) + A2Py(Ps − Pn)= in y momentum equation

Normally, the Equation (5) can be expressed in under-relaxed form as

aP�P=
∑
anb�nb + SP + (1− ��)�0P +

�VP
�t

�0P (6)

where � represents u; v and T ; and ��=under-relaxation factor for the variable �.
The continuity Equation (1) is satis�ed with the help of a pressure-correction equation [14]

of the form

aPP′
P =

∑
anbP′

nb + bP + bPno (7)
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which is derived by evaluating the cell face velocities from Equation (6) using the Pressure
Weighted Interpolation Method-Corrected (PWIMC) of Kobayashi and Pereira [15].
In the above equation, bPno represents the source term for the pressure correction equation

arising due to non-orthogonality of the grid and bP is the source term, which is the residue
of continuity equation, i.e.

bP= − [F∗
e − F∗

w + F
∗
n − F∗

s ] (8)

In the present algorithm, the contributions due to non-orthogonal terms are neglected altogether
in the pressure correction equation, in order to achieve a faster rate of convergence. Hence,
the �nal form of pressure correction equation becomes

aPP′
P=

∑
anbP′

nb + bP (9)

The pressure corrections P′ thus obtained are multiplied by an under-relaxation factor �P and
then added with the guess pressure values (P∗) to evaluate the �nal pressure values (P)
through the expression

P=P∗ + �PP′ (10)

For all the numerical simulations, the following convergence criteria were used:

(i) the maximum residual at any point normalized by �Au2 for momentum equations, �Au
for pressure equation and �CPAuT for energy equation 610−5;

(ii) maximum normalized di�erence in individual components (u; v; P and T ) with respect
to previously iterated value 610−5.

The QUICK scheme as a deferred correction to �rst order upwind scheme is used for
discretizing the convective �uxes. Initial relaxation factors are taken as �u=0:3; �P=0:1 and
�t =0:3 and these are progressively increased to �u=0:5; �P=0:3 and �t =0:5 to accelerate
convergence.

Boundary conditions

The �ow through a regular array of cylinders is similar to �ow through a straight pipe in
the sense that there will be an entrance region beyond which the �ow gets fully developed.
In a passage of periodically varying cross-section, the fully developed �ow is characterized
by a velocity �eld that repeats itself at corresponding axial locations in successive cycles
and the pressures at cyclically corresponding locations decrease linearly in the downstream
direction. For steady �ow over a bank of cylinders having a large number of rows, the �ow
can be assumed to be fully developed in the inner rows. Hence, the problem here is treated
as a periodic �ow with a constant pressure drop �P in the fully developed region. Since
the cylinders are symmetrically placed, the computational domain is selected as shown in
Figure 1.

(i) For in-line cylinders (Figure 3), the sides af and de are periodic boundaries on which
symmetric periodic boundary conditions are speci�ed, whereas ab, cd and ef are sym-
metric boundaries. The boundary conditions used are as follows:
• at inlet (af):

u(0; y)= u(l; y); v(0; y)= v(l; y)

P(0; y)=P(l; y) +�P
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Figure 3. Boundary conditions for a bank of in-line cylinders.

Figure 4. Boundary conditions for a bank of staggered cylinders.

• at outlet (de):

u(l; y)= u(0; y); v(l; y)= v(0; y)

P(l; y)=P(0; y)−�P

• at plane of symmetry (ab, cd and ef):

@u�=@n=0; un=0 and @T=@n=0

i:e: @u=@y=0; v=0 and @T=@y=0

• at the tube wall:
No slip condition and constant temperature are speci�ed i.e. u= v=0 and T =TH .

(ii) For staggered cylinders (Figure 4), sides af and cd are periodic boundaries in which anti-
symmetric periodic boundary conditions are speci�ed, whereas bc and ef are symmetric
boundaries. The boundary conditions are as follows:
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• at inlet (af):

u(0; y) = u(l; ytop − y); v(0; y)= v(l; ytop − y)
P(0; y) = P(l; ytop − y) +�P

• at outlet (de):
u(l; y) = u(0; ytop − y); v(l; y)= v(0; ytop − y)
P(l; y) = P(0; ytop − y)−�P

• at plane of symmetry (bc and ef):
@u�=@n=0; un=0 and @T=@n=0

i:e: @u=@y=0; v=0 and @T=@y=0

• at the tube wall:
No slip condition and constant temperature are speci�ed i.e u= v=0 and T =TH .

For both in-line and staggered cases, in order to have a �ow, it is necessary that the
pressures at the inlet and outlet di�er by a constant value �P. This unknown constant may
be implicitly given by prescribing the �ow rate (or the mean velocity at a cross section).
In the case of temperature solution, the scheme described above requires modi�cation. This
is because the inlet and outlet temperatures will not be the same due to heat transfer from
the cylinder. A uniform temperature is applied to the tube surface and at inlet or outlet, the
mean temperature rise in the solution domain is subtracted or added depending on whether
the boundary condition information is transferred backward or forward.

NUMERICAL METHODOLOGY

Time marching approach is used and the solution procedure is carried out iteratively within
each time step, due to the complex nature of boundary conditions prescribed. At time t=0,
to start the iteration process, a uniform velocity pro�le is assumed at inlet. During each cycle
of iteration, symmetric boundary conditions for in-line cylinders and anti-symmetric boundary
conditions for staggered cylinders, as described above, are imposed at the inlet, from the
predictions at the outlet boundary. In the case of temperature, the scheme described above is
modi�ed to account for the fact that due to heat transfer from the cylinder, the inlet and exit
temperatures are not same. A uniform temperature TH =1:0 is applied at the cylinder surfaces.
At time t=0, a uniform temperature pro�le Tin = 0 is assumed at the inlet. During each cycle
of iteration, temperatures at the outlet are obtained by interpolation from the two upstream
nodes and the mean temperature rise across the solution domain is subtracted to obtain the
inlet temperature pro�le.
The Reynolds number is de�ned as Re=(�ud)=�, where u is the mean velocity at the

minimum cross sectional area. The friction factor for one row of tubes can be written as
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following Zhukauskas and Ulinkas [12]

f=
1
2
�P
�u2

(11)

The local Nusselt number is obtained from a three-point polynomial �t for the temperature
pro�le (Nu= @T ∗=@n) and the average Nusselt number at the cylinder surface is obtained from

Nuav=

∫ �
0

@T ∗

@n
d�

∫ �
0 d�

(12)

where T ∗ is the non-dimensional temperature [(T − Tb)=(Tw − Tb)]; Tw is the cylinder wall
temperature and Tb is the bulk temperature.
The average inlet and outlet temperatures are given as

Tin or Tout = average inlet or outlet temperature=

∫ y
0 �uT (y) dy∫ y

0 �u dy

VALIDATION

For validating the numerical predictions, analysis for the �uid �ow and heat transfer over a
bank of in-line cylinders (Figure 3) is carried out for which there is experimental data. The
geometrical parameters in this case are

ST =d=1:25; SL=d=1:25 and d=1:0:

where ST is the transverse pitch and SL is the longitudinal pitch as shown in Figure 1(a).
Studies are carried out for three di�erent cases of Reynolds number, Re=50; 100 and 250.

Based on a grid independence study, 143× 81 grid points are used for computation. The
predicted results for friction factor and Nusselt number for Re=50; 100 and 250 agree very
well with the experimental results of Zhukauskas and Ulinkas [12] and Bergelin et al. [3] as
shown in Figure 5.
Another validation is carried out for �ow over a bank of staggered cylinders (Figure 4).

The geometrical parameters in this case are

ST =d=2:0; SL=d=2:0 and d=1:0

Results are predicted for three di�erent cases of Reynolds number, Re=40; 120 and 400. The
predicted results for Nusselt number and separation angle are shown in Table I .
It can be seen that the results of the present study agree very well with the numerical

results of Chen and Wung [13] and Wung and Chen [16].
With the con�dence obtained from these validations, the following detailed study is carried

out in order to investigate the local physical aspects of �uid �ow and heat transfer under
di�erent conditions.

FLOW OVER A BANK OF STAGGERED CYLINDERS

An extensive study is carried out to simulate the steady state �ow and convective heat transfer
phenomena for �ow over a bank of staggered cylinders, arranged in equitriangular pitch as
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Figure 5. Variation of friction factor and Nusselt number for di�erent
Reynolds number for in-line cylinders.

Table I. Predicted results of Nusselt number and separation angle.

Re Nusselt number Separation angle (�s), degree

Present Chen and Wung [13] Present Wung and Chen [16]

40 4.053 4.102 30 38
120 6.806 6.726 49 54
400 10.747 11.562 60 66

shown in Figure 1(b). It is assumed that the �ow is symmetric with respect to the top and
bottom boundaries of the computational domain and is periodic anti-symmetric with respect
to inlet and outlet portions. In other words, unsteady asymmetric vortex shedding behind the
cylinder has not been considered and for this reason the maximum Reynolds number value
has been restricted to 1000 for each cylinder spacing.
Computations are made for the pitch-to-diameter ratios (Sd=d) of 1.25, 1.5 and 2 and

Reynolds number values of 40, 75, 150, 200, 250, 500, 750 and 1000. For each study, an initial
mesh of 42× 21 grid points is used for computation and the number of grid points is increased
progressively till grid independent results are obtained. Based on the grid independence study,
the following grids in Table II are chosen for computations.
In the above grid speci�cations, the �rst dimension represents the number of nodes in

the �ow direction and the second dimension denotes the number of nodes in the transverse
direction. The converged solution for a lower Reynolds number is used as the initial guess
for the next higher Reynolds number to reduce the computational time.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:23–40



32 D. GHOSH ROYCHOWDHURY ET AL.

Table II. Grids chosen for computation.

Sd=d Grid Points

1.25 82× 41
1.50 82× 61
2.00 82× 81

Figure 6. Velocity vectors in staggered cylinders for pitch-ratio=1:25.

Flow behaviour

The variations in the �ow structure at di�erent Reynolds number and pitch-to-diameter ratios
(Sd=d) are shown in Figures 6–8, with the help of velocity vectors.
For a pitch-to-diameter ratio of 1.25, the �ow almost completely �lls the non-uniform

gap between the cylinders, when Reynolds number is equal to 100 (Figure 6(a)). Small
stagnation zones are observed in the front part of the second cylinder and the rear part of the
�rst cylinder, which are not accessed by the �ow. At higher Reynolds number (for the same
pitch-to-diameter ratio), both the stagnation zones increase (Figure 6(b)–(d)). The stagnation
zone in the rear region of the �rst cylinder increases in size at a faster rate and recirculatory
�ow is observed in this region for Re=1000. A relatively weaker recirculatory zone appears
near the front part of the second cylinder also. Due to the growth of stagnation=recirculation
regions, the width of �ow passage is reduced and a high-speed stream of narrow width is
seen at higher Reynolds number, which by-passes the front or rear regions of the cylinders.
Similar features are observed for the higher pitch-to-diameter ratio of 1.5 also, as shown in
Figure 7(a)–(d). The main di�erences, however, are that recirculatory �ow occurs at a lower
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Figure 7. Velocity vectors in staggered cylinders for pitch-ratio=1:5.

Figure 8. Velocity vectors in staggered cylinders for pitch-ratio=2:0.

Reynolds number itself (Re=250) and moreover, the sizes of the recirculatory zones are
larger at the same Reynolds number, as compared to the case of Sd=d=1:25. These trends
are continued for the Sd=d ratio of 2.0 also, as shown in Figure 8(a)–(d). Recirculatory �ow
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Figure 9. Variation of separation angle and reattachment length for staggered cylinders at di�er-
ent pitch-ratios. (a) Variation of separation angle for di�erent Reynolds number; (b) variation of

reattachment length for di�erent Reynolds number.

in the rear stagnation region of the �rst cylinder begins at Re=100 itself and when Re is
increased to 250, the recirculatory �ow almost covers up to �=90◦ for the �rst cylinder.
For this reason, simulation is not extended beyond Re=250, since the recirculatory �ow will
interfere with the prescribed �ow conditions at the inlet sections.
The variation of separation angle, �s and the reattachment length, Ls in the rear portion

of the �rst cylinder are plotted against Re, at various Sd=d values (Figure 9(a) and (b)). It
is evident that �ow separation angle and reattachment length increase with both Reynolds
number and pitch-to-diameter ratio. While the increase is gradual in the cases of Sd=d=1:25
and 1.5, it is very steep in the case of Sd=d=2:0. For the sake of comparison, the trend for
a free cylinder is also included in Figure 9(a). It is evident that the values of �ow separation
angle and reattachment length approach those for a free cylinder, when the gap between the
cylinders increases.

Temperature distribution

The typical shapes of isotherms for di�erent Reynolds numbers and spacing between cylinders
are shown in Figure 10(a)–(f). For low Reynolds number and small gap (Figure 10(a)),
the heating e�ect penetrates into the entire �uid between the cylinders, as seen from the
higher isotherm values. For a higher Reynolds number and small gap (Figure 10(b)), heating
is primarily con�ned to the boundary layers over both the cylinders. The thickness of the
boundary layers is observed to grow in the direction of �ow. In the rear portion of the �rst
cylinder, however, the e�ects of recirculatory �ow are observed very close to �=180◦. For
Sd=d=1:5 and Re=250 (Figure 10(c)), the heat a�ected zone is relatively smaller than that
for Sd=d=1:25 (Figure 10(a)). However, the in�uence of recirculation in the rear part is seen
at Re=250 itself for the case of Sd=d=1:5. At a Reynolds number of 500 (Figure 10(d)),
it is seen that the recirculatory region has relatively low temperatures due to back mixing of
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Figure 10. Isotherms for di�erent pitch-ratios and Reynolds number in staggered cylinders.

the cold free stream �uid with the heated boundary layer �uid. These features are accentuated
further in Figure 10(e) and (f), which correspond to Re=100 and Re=250 respectively, for
Sd=d=2:0. In particular, the severe distortions in the shapes of isotherms due to back mixing
caused by recirculatory �ow are evident in Figure 10(f).

Nusselt number variation

The Nusselt number variations along the front and rear cylinders are plotted in the angular
ranges of �=0◦ to 90◦ and �=180◦ to 270◦, respectively in Figure 11(a)–(c). In both
the cases, � is measured from rear of the cylinder (�=0◦) anti-clockwise from the �ow
direction. The following trends are evident from the �gures. For the �rst cylinder (A) local
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Figure 11. Variation of local Nusselt number along the cylinder surface
for di�erent pitch-ratios in staggered cylinders.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:23–40



LAMINAR FORCED CONVECTION OVER STAGGERED CYLINDERS 37

Figure 12. Variation of average Nusselt number for di�erent pitch-ratios and
Reynolds number in staggered cylinders.

Nu is maximum at the inlet section (�=90◦) and it decreases in the �ow direction (decreasing
�) up to a maximum value and then increases again in the rear portion of the cylinder (close
to �=0◦). The initial decrease of Nu in the �ow direction can be explained as due to thermal
boundary layer growth and the separation of �ow from the cylinder surface before reaching
the rear stagnation point. Beyond the separation point, due to recirculatory �ow, Nu again
increases in the �ow direction up to rear stagnation point. However, in addition to more general
trends, the local Nu also exhibits some undulations due to variation in the cross-sectional area
in the gap between the cylinders.
As regards the second cylinder (B), Nu has a minimum value at the front stagnation

point (�=180◦) due to the stagnation �uid zone prevailing there. With increase in angle, the
main �ow attaches to the cylinder and a local maximum is then observed in the Nu value
corresponding to the �ow attachment point. With further increase in �, Nu decreases due to
growth of the thermal boundary layer. But eventually assumed �=270◦ (out�ow boundary),
the Nusselt number again increases due to the convergence of stream lines caused by the
reduction in �ow area. Thus, the local Nusselt number variation on each cylinder shows
a complex pattern at di�erent Re and pitch-to-diameter ratio values, due to occurrence of
stagnation or recirculation zones, thermal boundary layer growth and changes in the �ow
cross-sectional area in the direction of �ow.
The average Nusselt number (considering heat transfer from both cylinders) variation with

Reynolds number is shown in Figure 12, for di�erent pitch-to-diameter ratios. For each spac-
ing, the average Nu is seen to increase with Re initially, attain a peak value, decrease slightly
with further increase in Re and �nally increase once again with Re until it leaves o� at a
second maximum value. These trends can be attributed to the changes in �ow structure which
take place in the gap between the cylinders, as follows. Average Nu increases with Re ini-
tially, because of the establishment of thin boundary layers. As seen from the �ow structures
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Figure 13. Variation of friction factor for �ow over staggered cylinders for di�erent pitch-ratios.

of Figures 6–8, for higher Re, stagnant �uid zones develop in the rear and front portions
of the �rst and second cylinders respectively. These stagnant zones cause poor heat transfer
between the cylinders and the �uid. Therefore, average Nu decreases with Reynolds number.
However, with further increase in Re, �ow recirculation causes back mixing and hence local
heat transfer rate increases due to larger �T in the recirculation zone. This re�ects as an
increase in the corresponding average Nu value. Eventually, at still higher Re, the average
Nusselt number magnitude levels o� because the recirculatory eddy attains its maximum size
(upto a separation angle of �s ≈ 90◦), in the con�ned region between the two cylinders. As
regards the e�ects of Sd=d ratio, it is evident that the maxima and minima of average Nu
shift towards lower Reynolds number values for larger spacing; this is easily explained from
the fact that the stagnant zone and recirculatory �ow occur at lower Reynolds number when
the gap between the cylinder is increased.

Pressure drop across bank of cylinders

Figure 13 gives the computed friction factor values with the empirical correlations suggested
by Zhuskauskas and Ulinkas [12]. The comparison shows that the predicted results agree very
well with the data of Zhuskauskas and Ulinkas [12] at all the pitch-to-diameter ratios. For the
laminar �ow range considered in the present study, the friction factor varies approximately in
inverse proportion to the Reynolds number, as expected.

SUMMARY

Numerical simulation is carried out for laminar �uid �ow and heat transfer over a bank of
in-line and staggered cylinders. The relative spacing between the cylinders is found to have a
strong e�ect on the �ow pattern and heat transport properties. At low spacing, the neighbouring
cylinder suppresses eddy formation behind the front cylinder and as the spacing increases;
recirculatory vortex is generated at a relatively lower Reynolds number. For low Reynolds
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number, thermal di�usion is the major mode of heat transfer whereas at higher Reynolds
number convective heat transfer is predominant. The velocity, pressure and temperature pro�les
obtained are physically consistent and the friction factor agrees excellently with the available
experimental data.
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NOTATION

English symbols

A Area
a Coe�cients of discretized equations
b Component of source term
CP Speci�c heat
d Coe�cient of di�usive �ux; diameter of the cylinder
F Mass �ux
g Acceleration due to gravity
h Convective heat transfer coe�cient
Nu Local Nusselt number (h d=�)
P Dynamic pressure (= total pressure− hydrostatic pressure)
Q̇ Volumetric heat generation
S source term; pitch for the bank of cylinders
T Temperature
Tin Inlet temperature (average)
Tout Outlet temperature (average)
t Time
u; v Cartesian velocity components
u∝ Average approach velocity for �ow over cylinders
V Volume of a cell
x; y Co-ordinate directions

Greek symbols

� Thermal di�usivity (�=�CP); under-relaxation factor for iterative solution
� Coe�cient for di�usive �ux
� Thermal conductivity
� Dynamic viscosity
� Angular co-ordinate on the cylinder surface
� Density
� Stress tensor component

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:23–40



40 D. GHOSH ROYCHOWDHURY ET AL.

Subscripts

e; w; n; s Values associated with control volume faces
E;W;N; S Values associated with centres of neighbouring control volumes
ne; nw; se; sw Values associated with control volume vertices
k For control volume face k
i; j Co-ordinate direction indices
nb Neighbouring node
P Pressure; values associated with centre of the control volume
u For velocity variable
t For temperature

Superscripts

′ Correction increment
∗ Uncorrected values (predictor step)
1; 2 Orthogonal and non-orthogonal term index
o Initial guess value
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